Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 31, 2026
- 
            We present an efficient method for investigating kinetics of gelling system, demonstrating that combining active learning and microrheology can streamline response surface construction and predict how gelation times influence the cell morphology.more » « lessFree, publicly-accessible full text available January 29, 2026
- 
            Elastic continuum mechanical models are widely used to compute deformations due to pressure changes in buried cavities, such as magma reservoirs. In general, analytical models are fast but can be inaccurate as they do not correctly satisfy boundary conditions for many geometries, while numerical models are slow and may require specialized expertise and software. To overcome these limitations, we trained supervised machine learning emulators (model surrogates) based on parallel partial Gaussian processes which predict the output of a finite element numerical model with high fidelity but >1,000× greater computational efficiency. The emulators are based on generalized nondimensional forms of governing equations for finite non‐dipping spheroidal cavities in elastic halfspaces. Either cavity volume change or uniform pressure change boundary conditions can be specified, and the models predict both surface displacements and cavity (pore) compressibility. Because of their computational efficiency, using the emulators as numerical model surrogates can greatly accelerate data inversion algorithms such as those employing Bayesian Markov chain Monte Carlo sampling. The emulators also permit a comprehensive evaluation of how displacements and cavity compressibility vary with geometry and material properties, revealing the limitations of analytical models. Our open‐source emulator code can be utilized without finite element software, is suitable for a wide range of cavity geometries and depths, includes an estimate of uncertainties associated with emulation, and can be used to train new emulators for different source geometries.more » « less
- 
            We introduce the shape module of the Python package Geomstats to analyze shapes of objects represented as landmarks, curves and surfaces across fields of natural sciences and engineering. The shape module first implements widely used shape spaces, such as the Kendall shape space, as well as elastic spaces of discrete curves and surfaces. The shape module further implements the abstract mathematical structures of group actions, fiber bundles, quotient spaces and associated Riemannian metrics which allow users to build their own shape spaces. The Riemannian geometry tools enable users to compare, average, interpolate between shapes inside a given shape space. These essential operations can then be leveraged to perform statistics and machine learning on shape data. We present the object-oriented implementation of the shape module along with illustrative examples and show how it can be used to perform statistics and machine learning on shape spaces.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available